Figure A.1: Pairs Plot of Correlations Between Aid Types in Post-Conflict Countries

library(dplyr)
library(GGally)
library(cowplot)

rm(list = ls())
# Load data frame
load("./data/diss_df.rda")

#### Generate Pairs Plot For Different Aid Types ####

my_scatter <- function(data, mapping, ...) {
  
  ggplot(data = data, mapping = mapping) + 
    geom_point(..., alpha = 0.5, size = 1.5) + 
    geom_smooth(method = "lm")
}

my_diag_hist <- function(data, mapping, ...) {
  
  ggplot(data = data, mapping = mapping) + 
    geom_histogram(fill = "grey")
}
  
pairsplot_aidtypes <- diss_df %>% 
  ungroup() %>% 
  dplyr::select(aiddata_Aid, dga, commodity_aid, program_aid ) %>% 
  rename(aiddataAid = aiddata_Aid, 
         commodityAid = commodity_aid, 
         programAid = program_aid) %>% 
  mutate_each(., funs(log)) %>% 
  ggpairs(., axisLabels = "external",
          showStrips = F, 
          diag = list(continuous = my_diag_hist),
          lower = list(continuous = my_scatter),
          columnLabels = c("All Aid", "DGA", "Budget Aid", "Program Aid")) + theme_bw()

# Output for manuscript
# library(tikzDevice)
# options( tikzDocumentDeclaration = "\\documentclass[14pt]{article}" )
# tikz("../figures/pairsplot_aidtypes.tex", height = 5.5, width = 8.5)
# print(pairsplot_aidtypes)
# dev.off()

# Output for replication archive
print(pairsplot_aidtypes)

LS0tDQp0aXRsZTogIkFwcGVuZGl4IGZvciBDaGFwdGVyIDQiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19mbG9hdDogDQogICAgICBjb2xsYXBzZWQ6IGZhbHNlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIGNvZGVfZm9sZGluZzogImhpZGUiDQotLS0NCg0KDQojIEZpZ3VyZSBBLjE6IFBhaXJzIFBsb3Qgb2YgQ29ycmVsYXRpb25zIEJldHdlZW4gQWlkIFR5cGVzIGluIFBvc3QtQ29uZmxpY3QgQ291bnRyaWVzDQoNCmBgYGBgYHtyLCBtZXNzYWdlPUYsIHdhcm5pbmc9RiwgY2FjaGUgPSBULCBjb21tZW50cyA9IEYsIGZpZy53aWR0aCA9IDgsIGZpZy5oZWlnaHQgPSA3LCBmaWcuYWxpZ24gPSAiY2VudGVyIn0NCg0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoR0dhbGx5KQ0KbGlicmFyeShjb3dwbG90KQ0KDQpybShsaXN0ID0gbHMoKSkNCiMgTG9hZCBkYXRhIGZyYW1lDQpsb2FkKCIuL2RhdGEvZGlzc19kZi5yZGEiKQ0KDQojIyMjIEdlbmVyYXRlIFBhaXJzIFBsb3QgRm9yIERpZmZlcmVudCBBaWQgVHlwZXMgIyMjIw0KDQpteV9zY2F0dGVyIDwtIGZ1bmN0aW9uKGRhdGEsIG1hcHBpbmcsIC4uLikgew0KICANCiAgZ2dwbG90KGRhdGEgPSBkYXRhLCBtYXBwaW5nID0gbWFwcGluZykgKyANCiAgICBnZW9tX3BvaW50KC4uLiwgYWxwaGEgPSAwLjUsIHNpemUgPSAxLjUpICsgDQogICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIikNCn0NCg0KbXlfZGlhZ19oaXN0IDwtIGZ1bmN0aW9uKGRhdGEsIG1hcHBpbmcsIC4uLikgew0KICANCiAgZ2dwbG90KGRhdGEgPSBkYXRhLCBtYXBwaW5nID0gbWFwcGluZykgKyANCiAgICBnZW9tX2hpc3RvZ3JhbShmaWxsID0gImdyZXkiKQ0KfQ0KICANCnBhaXJzcGxvdF9haWR0eXBlcyA8LSBkaXNzX2RmICU+JSANCiAgdW5ncm91cCgpICU+JSANCiAgZHBseXI6OnNlbGVjdChhaWRkYXRhX0FpZCwgZGdhLCBjb21tb2RpdHlfYWlkLCBwcm9ncmFtX2FpZCApICU+JSANCiAgcmVuYW1lKGFpZGRhdGFBaWQgPSBhaWRkYXRhX0FpZCwgDQogICAgICAgICBjb21tb2RpdHlBaWQgPSBjb21tb2RpdHlfYWlkLCANCiAgICAgICAgIHByb2dyYW1BaWQgPSBwcm9ncmFtX2FpZCkgJT4lIA0KICBtdXRhdGVfZWFjaCguLCBmdW5zKGxvZykpICU+JSANCiAgZ2dwYWlycyguLCBheGlzTGFiZWxzID0gImV4dGVybmFsIiwNCiAgICAgICAgICBzaG93U3RyaXBzID0gRiwgDQogICAgICAgICAgZGlhZyA9IGxpc3QoY29udGludW91cyA9IG15X2RpYWdfaGlzdCksDQogICAgICAgICAgbG93ZXIgPSBsaXN0KGNvbnRpbnVvdXMgPSBteV9zY2F0dGVyKSwNCiAgICAgICAgICBjb2x1bW5MYWJlbHMgPSBjKCJBbGwgQWlkIiwgIkRHQSIsICJCdWRnZXQgQWlkIiwgIlByb2dyYW0gQWlkIikpICsgdGhlbWVfYncoKQ0KDQojIE91dHB1dCBmb3IgbWFudXNjcmlwdA0KIyBsaWJyYXJ5KHRpa3pEZXZpY2UpDQojIG9wdGlvbnMoIHRpa3pEb2N1bWVudERlY2xhcmF0aW9uID0gIlxcZG9jdW1lbnRjbGFzc1sxNHB0XXthcnRpY2xlfSIgKQ0KIyB0aWt6KCIuLi9maWd1cmVzL3BhaXJzcGxvdF9haWR0eXBlcy50ZXgiLCBoZWlnaHQgPSA1LjUsIHdpZHRoID0gOC41KQ0KIyBwcmludChwYWlyc3Bsb3RfYWlkdHlwZXMpDQojIGRldi5vZmYoKQ0KDQojIE91dHB1dCBmb3IgcmVwbGljYXRpb24gYXJjaGl2ZQ0KcHJpbnQocGFpcnNwbG90X2FpZHR5cGVzKQ0KYGBgDQo=