Dependent Variables

Democratization Scores

Variable in Dataset Description Source
polity2_t2 Polity2 Scores at \(t_2\) Marshall, Jaggers, and Gurr (2015)
fh_t2 Freedom House Scores at \(t_2\) Freedom House (2013)
polity2_t1,…,polity2_t5; fh_t1,…,fh_t5 Polity and FH scores at \(t_1, ..., t_5\) annual leads Marshall, Jaggers, and Gurr (2015), Freedom House (2013)

Election Quality

Variable in Dataset Description Source
quality NELDA Election Quality Index on a 9-point scale. See text for description of individual NELDA variables included Hyde and Marinov (2012)
v2xel_frefair V-Dem Clean Election Index, between 0 and 1. See text for description of individual V-Dem components included Coppedge et al. (2015)

Rule of Law

Variable in Dataset Description Source
LJI_t2 Linzer and Staton De Facto Judicial Independence Linzer and Staton (2015)
v2x_jucon_t2 V-Dem Judicial Independence Coppedge et al. (2015)
LJI_t1, …, LJI_t5; v2x_jucon_t1, …, v2x_jucon_t5 Different annual leads for LJI and V-Dem scores Linzer and Staton (2015), Coppedge et al. (2015)

Public vs. Private Goods Provision

Variable in Dataset Description Source
v2dlencmps_t1 Particularistic vs. Public Spending. Low values indicate more particularistic spending Coppedge et al. (2015)
v2x_corr_t1 V-Dem Political Corruption score. High values indicate higher corruption. Coppedge et al. (2015)
v2x_corr_t1,…v2x_corr_t5; v2dlencmps_t1,…v2dlencmps_t5 Different annual leads for the corruption and spending variables Coppedge et al. (2015)

Independent Variables

Power-Sharing

Variable in Dataset Description Source
cabinetCOUNT Power-Sharing (cabinet). Average count of rebel seats in the power-sharing cabinet in a year Ottmann and Vüllers (2015)
seniorCOUNT Power-Sharing (senior). Average count of rebel seats in senior positions the power-sharing cabinet Ottmann and Vüllers (2015)
nonseniorCOUNT Power-Sharing (nonsenior). Average count of rebel seats in nonsenior positions the power-sharing cabinet Ottmann and Vüllers (2015)
cabinetINC Power-Sharing (binary). Dummy indicating whether any rebel held a cabinet position in the post-conflict power-sharing cabinet in a year Ottmann and Vüllers (2015)

Alternative codings of the power-sharing variable for robustness checks

Variable in Dataset Description Source
ps_share Power-Sharing (share). Share of rebel seats in the power-sharing cabinet. Only available until 2008. Banks and Wilson (2016); Ottmann and Vüllers (2015)
cabinetCOUNT_six Power-Sharing (six). Number of rebel seats in the power-sharing cabinet, if rebels held at the position for at least six months Ottmann and Vüllers (2015)
cabinetCOUNT_min Power-Sharing (min). Miniumun number of rebel seats in the power-sharing cabinet Ottmann and Vüllers (2015)
cabinetCOUNT_max Power-Sharing (max). Maximum number of rebel seats in the power-sharing cabinet Ottmann and Vüllers (2015)

Foreign Aid

Variable in Dataset Description Source
aiddata_AidGDP_ln Natural log of Foreign Aid in % of GDP (constant 2011 USD) Tierney et al. (2011)
dga_gdp_zero Democracy and Governance Aid as % of GDP (constant 2011 USD). zero indicates that country-years with no democracy and governance aid projects were assigned the value of zero. See main text for description of sector codes used. Tierney et al. (2011)
program_aid_gdp_zero Program Aid as % of GDP (constant 2011 USD). zero indicates that country-years with no program aid projects were assigned the value of zero. See main text for description of sector codes used. Tierney et al. (2011)
commodity_aid_gdp_zero Budget Aid as % of GDP (constant 2011 USD). zero indicates that country-years with no budget aid projects were assigned the value of zero. See main text for description of sector codes used. Tierney et al. (2011)

Control Variables

Variable in Dataset Description Source
nonstate Dummy variable; 1 = Presence of nonstate conflict in country-year, 0 = no nonstate conflict Sundberg, Eck, and Kreutz (2012)
conf_intens Dummy variable; 1 = Conflict prior to peace period had more than 1000 Battle-related Deaths, 0 = Less than 1000 BRDs Themnér and Wallensteen (2012)
ln_gdp_pc, log(GDP_per_capita) Numeric; Natural log of Gross Domestic Product (GDP) per capita (WDI variable name: NY.GDP.MKTP.CD) World Bank (2015a)
ln_pop, log(population) Numeric; Natural log of population size (WDI variable name: SP.POP.TOTL) World Bank (2015b)
WBnatres Numeric; Natural Resource Rents in % of GDP (WDI variable name: NY.GDP.TOTL.RT.ZS) World Bank (2015c)

Mechanisms

Elections

Variable in Dataset Description Source
nelda57 Dummy; NELDA57 “Was aid (threatened to be) cut-off before or after the elections?” (1 = yes, 0 = no) Hyde and Marinov (2012)
nelda45 Dummy; NELDA45 “Were international monitors present?” (1 = yes, 0 = no) Hyde and Marinov (2012)

Rule of Law

Variable in Dataset Description Source
v2jureform_t2 Numeric; V-Dem measure of reform of the judiciary at \(t_2\) Coppedge et al. (2015)
v2juaccnt_t2 Numeric; V-Dem measure of accountability of the judiciary at \(t_2\) Coppedge et al. (2015)
v2jupurge_t2 Numeric; V-Dem measure of purges of the judiciary at \(t_2\) Coppedge et al. (2015)
v2jupack_t2 Numeric; V-Dem measure of court packing at \(t_2\) Coppedge et al. (2015)

Robustness Checks

Variable in Dataset Description Source
Ethnic Numeric; Ethnic Fractionalization Index; higher values indicate higher fractionalization Alesina et al. (2003)
DS_ordinal Ordinal; UN PKO; 1 to 4 with 1 least robust mandate and 4 most robust mandate (see text for coding details) Doyle and Sambanis (2006), Hegre, Hultman, and Nygard (2011)
LJI_regional_mean Numeric; regional mean of LJI scores (see above) with in 14 World Bank regions Linzer and Staton (2015)
commonlaw Dummy; Indicates whether country common law legal system (1 = yes, 0 = no) Melton and Ginsburg (2014)
duration_constitution Numeric; Number of years current constitution has been in power Melton and Ginsburg (2014)
persaggny2 Numeric; " total number of changes of the chief executive during the regime spell divided by the years of regime spell duration" higher values = lower tendency of personalist rule Wahman, Teorell, and Hadenius (2013)

References

Alesina, Alberto, Arnaud Devleeschauwer, William Easterly, Sergio Kurlat, and Romain Wacziarg. 2003. “Fractionalization.” Journal of Economic Growth 8 (2): 155–94. doi:10.1023/A:1024471506938.

Banks, Arthur S., and Kenneth A. Wilson. 2016. Cross-National Time-Series Data Archive. Jerusalem: Databanks International.

Coppedge, Michael, John Gerring, Staffan I. Lindberg, Jan Teorell, and others. 2015. Varieties of Democracy: Methodology. Gothenburg: Varieties of Democracy (V-Dem) Project.

Doyle, Michael W., and Nicholas Sambanis. 2006. Making War and Building Peace: United Nations Peace Operations. Princeton: Princeton University Press.

Freedom House. 2013. Freedom in the World 2013. Washington, DC: Freedom House.

Hegre, Håvard, Lisa Hultman, and Havard Mokleiv Nygard. 2011. “Simulating the Effect of Peacekeeping Operations 2010-2035.” In Social Computing, Behavioral-Cultural Modeling and Prediction, edited by John Salerno, Shanchieh Jay Yang, Dana Nau, and Sun-Ki Chai, 325–32. New York: Springer.

Hyde, Susan D., and Nikolay Marinov. 2012. “Which Elections Can Be Lost?” Political Analysis 20 (2): 191–210. doi:10.1093/pan/mpr040.

Linzer, Drew A., and Jeffrey K. Staton. 2015. “A Global Measure of Judicial Independence, 19482012.” Journal of Law and Courts 3 (2): 223–56.

Marshall, Monty G., Keith Jaggers, and Ted Robert Gurr. 2015. “Polity IV Project. Political Regime Characteristics and Transitions, 1800-2014. Dataset User’s Manual.” Center for Systemic Peace: Polity IV Project. http://www.systemicpeace.org/inscr/p4manualv2015.pdf.

Melton, James, and Tom Ginsburg. 2014. “Does De Jure Judicial Independence Really Matter? A Reevaluation of Explanations for Judicial Independence.” Journal of Law and Courts 2 (2): 187–217.

Ottmann, Martin, and Johannes Vüllers. 2015. “The Power-Sharing Event Dataset (PSED): A New Dataset on the Promises and Practices of Power-Sharing in Post-Conflict Countries.” Conflict Management and Peace Science 32 (3): 327–50.

Sundberg, Ralph, Kristine Eck, and Joakim Kreutz. 2012. “Introducing the UCDP Non-State Conflict Dataset.” Journal of Peace Research 49 (2): 351–62. doi:10.1177/0022343311431598.

Themnér, Lotta, and Peter Wallensteen. 2012. “Armed Conflicts, 19462011.” Journal of Peace Research 49 (4): 565–75. doi:10.1177/0022343312452421.

Tierney, Michael J., Daniel L. Nielson, Darren G. Hawkins, J. Timmons Roberts, Michael G. Findley, Ryan M. Powers, Bradley Parks, Sven E. Wilson, and Robert L. Hicks. 2011. “More Dollars Than Sense: Refining Our Knowledge of Development Finance Using AidData.” World Development 39 (11): 1891–1906.

Wahman, Michael, Jan Teorell, and Axel Hadenius. 2013. “Authoritarian Regime Types Revisited: Updated Data in Comparative Perspective.” Contemporary Politics 19 (1): 19–34. doi:10.1080/13569775.2013.773200.

World Bank. 2015a. “GDP (Current US$).” World Development Indicators. http://data.worldbank.org/indicator/NY.GDP.MKTP.CD.

———. 2015b. “Population, Total.” World Development Indicators. http://data.worldbank.org/indicator/SP.POP.TOTL.

———. 2015c. “Total Natural Resource Rents (% of GDP).” World Development Indicators. http://data.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS.

LS0tDQp0aXRsZTogIkNvZGVib29rIg0KYmlibGlvZ3JhcGh5OiAuLi8uLi9CaWJsaW9ncmFwaHkvRGlzc2VydGF0aW9uLmJpYg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZmxvYXQ6IA0KICAgICAgY29sbGFwc2VkOiBmYWxzZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgICBjb2RlX2ZvbGRpbmc6ICJoaWRlIg0KICAgIHBhbmRvY19hcmdzOiBbDQogICAgICAiLS1jb2x1bW5zPTEwMDAwIg0KICAgIF0NCg0KLS0tDQoNCjxzdHlsZT4NCnRoOm50aC1jaGlsZCgyKXsNCiAgd2lkdGg6MjAlOw0KICB9DQoNCnRoOm50aC1jaGlsZCgyKXsNCiAgd2lkdGg6NjAlOw0KICB9DQogIA0KdGg6bnRoLWNoaWxkKDMpew0KICB3aWR0aDoyMCU7DQogIH0NCiAgDQo8L3N0eWxlPg0KDQojIERlcGVuZGVudCBWYXJpYWJsZXMNCg0KIyMgRGVtb2NyYXRpemF0aW9uIFNjb3Jlcw0KDQp8ICBWYXJpYWJsZSBpbiBEYXRhc2V0CSAgICB8IERlc2NyaXB0aW9uICAgfCAgU291cmNlICAJfA0KfC0tLQkgICAgICAgICAgICAgICAgICAgICAgfC0tLQkgICAgfC0tLQkgICAgICAgICAgfA0KfCBgcG9saXR5Ml90MmAgICAJICAgICAgICAgIHwgUG9saXR5MiBTY29yZXMgYXQgJHRfMiQgIAl8ICBAbWFyc2hhbGwyMDE1IAl8DQp8IGBmaF90MmAgICAJICAgICAgICAgICAgICB8ICBGcmVlZG9tIEhvdXNlIFNjb3JlcyBhdCAkdF8yJCAJfCBAZnJlZWRvbWhvdXNlMjAxMwl8DQp8IGBwb2xpdHkyX3QxYCwuLi4sYHBvbGl0eTJfdDVgOyBgZmhfdDFgLC4uLixgZmhfdDVgICAgCXwgIFBvbGl0eSBhbmQgRkggc2NvcmVzIGF0ICR0XzEsIC4uLiwgdF81JCBhbm51YWwgbGVhZHMgCXwgQG1hcnNoYWxsMjAxNSwgQGZyZWVkb21ob3VzZTIwMTMJfA0KDQoNCiMjIEVsZWN0aW9uIFF1YWxpdHkNCnwgIFZhcmlhYmxlIGluIERhdGFzZXQJICAgIHwgRGVzY3JpcHRpb24gICB8ICBTb3VyY2UgIAl8DQp8LS0tCSAgICAgICAgICAgICAgICAgICAgICB8LS0tCSAgICB8LS0tCSAgICAgICAgICB8DQp8IGBxdWFsaXR5YCAgIAkgICAgICAgICAgfCBORUxEQSBFbGVjdGlvbiBRdWFsaXR5IEluZGV4IG9uIGEgOS1wb2ludCBzY2FsZS4gU2VlIHRleHQgZm9yIGRlc2NyaXB0aW9uIG9mIGluZGl2aWR1YWwgTkVMREEgdmFyaWFibGVzIGluY2x1ZGVkICAJfCAgQGh5ZGUyMDEyIAl8DQp8IGB2MnhlbF9mcmVmYWlyYCAgIAkgICAgICAgICAgfCBWLURlbSBDbGVhbiBFbGVjdGlvbiBJbmRleCwgYmV0d2VlbiAwIGFuZCAxLiBTZWUgdGV4dCBmb3IgZGVzY3JpcHRpb24gb2YgaW5kaXZpZHVhbCBWLURlbSBjb21wb25lbnRzIGluY2x1ZGVkICAJfCAgQGNvcHBlZGdlMjAxNSAJfA0KDQojIyBSdWxlIG9mIExhdw0KfCAgVmFyaWFibGUgaW4gRGF0YXNldAkgICAgfCBEZXNjcmlwdGlvbiAgIHwgIFNvdXJjZSAgCXwNCnwtLS0JICAgICAgICAgICAgICAgICAgICAgIHwtLS0JICAgIHwtLS0JICAgICAgICAgIHwNCnwgYExKSV90MmAgICAJICAgICAgICAgIHwgTGluemVyIGFuZCBTdGF0b24gRGUgRmFjdG8gSnVkaWNpYWwgSW5kZXBlbmRlbmNlCXwgIEBsaW56ZXIyMDE1IAl8DQp8IGB2MnhfanVjb25fdDJgICAgCSAgICAgICAgICB8IFYtRGVtIEp1ZGljaWFsIEluZGVwZW5kZW5jZQl8ICBAY29wcGVkZ2UyMDE1IAl8DQp8IGBMSklfdDFgLCAuLi4sIGBMSklfdDVgOyBgdjJ4X2p1Y29uX3QxYCwgLi4uLCBgdjJ4X2p1Y29uX3Q1YCAgfCBEaWZmZXJlbnQgYW5udWFsIGxlYWRzIGZvciBMSkkgYW5kIFYtRGVtIHNjb3JlcyB8IEBsaW56ZXIyMDE1LCBAY29wcGVkZ2UyMDE1IHwNCg0KDQoNCiMjIFB1YmxpYyB2cy4gUHJpdmF0ZSBHb29kcyBQcm92aXNpb24NCnwgIFZhcmlhYmxlIGluIERhdGFzZXQJICAgIHwgRGVzY3JpcHRpb24gICB8ICBTb3VyY2UgIAl8DQp8LS0tCSAgICAgICAgICAgICAgICAgICAgICB8LS0tCSAgICB8LS0tCSAgICAgICAgICB8DQp8IGB2MmRsZW5jbXBzX3QxYCAgIAkgICAgICAgICAgfCBQYXJ0aWN1bGFyaXN0aWMgdnMuIFB1YmxpYyBTcGVuZGluZy4gTG93IHZhbHVlcyBpbmRpY2F0ZSBtb3JlIHBhcnRpY3VsYXJpc3RpYyBzcGVuZGluZwl8ICBAY29wcGVkZ2UyMDE1IAl8DQp8IGB2MnhfY29ycl90MWAgICAJICAgICAgICAgIHwgVi1EZW0gUG9saXRpY2FsIENvcnJ1cHRpb24gc2NvcmUuIEhpZ2ggdmFsdWVzIGluZGljYXRlIGhpZ2hlciBjb3JydXB0aW9uLgl8ICBAY29wcGVkZ2UyMDE1IAl8DQp8IGB2MnhfY29ycl90MWAsLi4uYHYyeF9jb3JyX3Q1YDsgICBgdjJkbGVuY21wc190MWAsLi4uYHYyZGxlbmNtcHNfdDVgCSAgICAgICAgICB8IERpZmZlcmVudCBhbm51YWwgbGVhZHMgZm9yIHRoZSBjb3JydXB0aW9uIGFuZCBzcGVuZGluZyB2YXJpYWJsZXMJfCAgQGNvcHBlZGdlMjAxNSAJfA0KDQoNCiMgSW5kZXBlbmRlbnQgVmFyaWFibGVzDQoNCiMjIFBvd2VyLVNoYXJpbmcNCg0KfCAgVmFyaWFibGUgaW4gRGF0YXNldCAJICAgIHwgRGVzY3JpcHRpb258ICBTb3VyY2UgIAkgICAgfA0KfC0tLQkgICAgICAgICAgICAgICAgICAgICAgfDotLS0tLS0tLS0tLS0tLS18LS0tCSAgICAgICAgICB8DQp8IGBjYWJpbmV0Q09VTlRgICAgICAgICAgICAgfCBQb3dlci1TaGFyaW5nIChjYWJpbmV0KS4gQXZlcmFnZSBjb3VudCBvZiByZWJlbCBzZWF0cyBpbiB0aGUgcG93ZXItc2hhcmluZyBjYWJpbmV0IGluIGEgeWVhciB8ICBAb3R0bWFubjIwMTUgfA0KfCBgc2VuaW9yQ09VTlRgICAgICAgICAgICAgfCBQb3dlci1TaGFyaW5nIChzZW5pb3IpLiBBdmVyYWdlIGNvdW50IG9mIHJlYmVsIHNlYXRzIGluIHNlbmlvciBwb3NpdGlvbnMgdGhlIHBvd2VyLXNoYXJpbmcgY2FiaW5ldCAgIHwgIEBvdHRtYW5uMjAxNSB8DQp8IGBub25zZW5pb3JDT1VOVGAgICAgICAgICAgICB8IFBvd2VyLVNoYXJpbmcgKG5vbnNlbmlvcikuIEF2ZXJhZ2UgY291bnQgb2YgcmViZWwgc2VhdHMgaW4gbm9uc2VuaW9yIHBvc2l0aW9ucyB0aGUgcG93ZXItc2hhcmluZyBjYWJpbmV0ICAgfCAgQG90dG1hbm4yMDE1IHwNCnwgYGNhYmluZXRJTkNgICAgICAgICAgICAgICB8IFBvd2VyLVNoYXJpbmcgKGJpbmFyeSkuIER1bW15IGluZGljYXRpbmcgd2hldGhlciBhbnkgcmViZWwgaGVsZCBhIGNhYmluZXQgcG9zaXRpb24gaW4gdGhlIHBvc3QtY29uZmxpY3QgIHBvd2VyLXNoYXJpbmcgY2FiaW5ldCBpbiBhIHllYXIgfCAgQG90dG1hbm4yMDE1IHwNCg0KIyMjIyBBbHRlcm5hdGl2ZSBjb2RpbmdzIG9mIHRoZSBwb3dlci1zaGFyaW5nIHZhcmlhYmxlIGZvciByb2J1c3RuZXNzIGNoZWNrcw0KDQp8ICBWYXJpYWJsZSBpbiBEYXRhc2V0IAkgICAgfCBEZXNjcmlwdGlvbnwgIFNvdXJjZSAgCSAgICB8DQp8LS0tCSAgICAgICAgICAgICAgICAgICAgICB8Oi0tLS0tLS0tLS0tLS0tLXwtLS0JICAgICAgICAgIHwNCnwgYHBzX3NoYXJlYCAgICAgICAgICAgIHwgUG93ZXItU2hhcmluZyAoc2hhcmUpLiBTaGFyZSBvZiByZWJlbCBzZWF0cyBpbiB0aGUgcG93ZXItc2hhcmluZyBjYWJpbmV0LiBPbmx5IGF2YWlsYWJsZSB1bnRpbCAyMDA4LiAgIHwgQGJhbmtzMjAxNjsgIEBvdHRtYW5uMjAxNSB8DQp8IGBjYWJpbmV0Q09VTlRfc2l4YCAgICB8IFBvd2VyLVNoYXJpbmcgKHNpeCkuIE51bWJlciBvZiByZWJlbCBzZWF0cyBpbiB0aGUgcG93ZXItc2hhcmluZyBjYWJpbmV0LCAqaWYgcmViZWxzIGhlbGQgYXQgdGhlIHBvc2l0aW9uIGZvciBhdCBsZWFzdCBzaXggbW9udGhzKiAgfCAgQG90dG1hbm4yMDE1IHwNCnwgYGNhYmluZXRDT1VOVF9taW5gICAgIHwgUG93ZXItU2hhcmluZyAobWluKS4gTWluaXVtdW4gbnVtYmVyIG9mIHJlYmVsIHNlYXRzIGluIHRoZSBwb3dlci1zaGFyaW5nIGNhYmluZXQgIHwgIEBvdHRtYW5uMjAxNSB8DQp8IGBjYWJpbmV0Q09VTlRfbWF4YCAgICB8IFBvd2VyLVNoYXJpbmcgKG1heCkuIE1heGltdW0gbnVtYmVyIG9mIHJlYmVsIHNlYXRzIGluIHRoZSBwb3dlci1zaGFyaW5nIGNhYmluZXQgIHwgIEBvdHRtYW5uMjAxNSB8DQoNCg0KIyMgRm9yZWlnbiBBaWQNCg0KfCAgVmFyaWFibGUgaW4gRGF0YXNldCAJICAgIHwgRGVzY3JpcHRpb258ICBTb3VyY2UgIAkgICAgfA0KfC0tLQkgICAgICAgICAgICAgICAgICAgICAgfDotLS0tLS0tLS0tLS0tLS18LS0tCSAgICAgICAgICB8DQp8IGBhaWRkYXRhX0FpZEdEUF9sbmAgICAgICAgICAgICB8IE5hdHVyYWwgbG9nIG9mIEZvcmVpZ24gQWlkIGluICUgb2YgR0RQIChjb25zdGFudCAyMDExIFVTRCkgfEB0aWVybmV5MjAxMSAgIHwNCnwgYGRnYV9nZHBfemVyb2AgICAgICAgICAgICB8IERlbW9jcmFjeSBhbmQgR292ZXJuYW5jZSBBaWQgYXMgJSBvZiBHRFAgKGNvbnN0YW50IDIwMTEgVVNEKS4gYHplcm9gIGluZGljYXRlcyB0aGF0IGNvdW50cnkteWVhcnMgd2l0aCBubyBkZW1vY3JhY3kgYW5kIGdvdmVybmFuY2UgYWlkIHByb2plY3RzIHdlcmUgYXNzaWduZWQgdGhlIHZhbHVlIG9mIHplcm8uIFNlZSBtYWluIHRleHQgZm9yIGRlc2NyaXB0aW9uIG9mIHNlY3RvciBjb2RlcyB1c2VkLiB8QHRpZXJuZXkyMDExICAgfA0KfCBgcHJvZ3JhbV9haWRfZ2RwX3plcm9gICAgICAgICAgICAgfCBQcm9ncmFtIEFpZCBhcyAlIG9mIEdEUCAoY29uc3RhbnQgMjAxMSBVU0QpLiBgemVyb2AgaW5kaWNhdGVzIHRoYXQgY291bnRyeS15ZWFycyB3aXRoIG5vIHByb2dyYW0gYWlkIHByb2plY3RzIHdlcmUgYXNzaWduZWQgdGhlIHZhbHVlIG9mIHplcm8uIFNlZSBtYWluIHRleHQgZm9yIGRlc2NyaXB0aW9uIG9mIHNlY3RvciBjb2RlcyB1c2VkLiB8QHRpZXJuZXkyMDExICAgfA0KfCBgY29tbW9kaXR5X2FpZF9nZHBfemVyb2AgICAgICAgICAgICB8IEJ1ZGdldCBBaWQgYXMgJSBvZiBHRFAgKGNvbnN0YW50IDIwMTEgVVNEKS4gYHplcm9gIGluZGljYXRlcyB0aGF0IGNvdW50cnkteWVhcnMgd2l0aCBubyBidWRnZXQgYWlkIHByb2plY3RzIHdlcmUgYXNzaWduZWQgdGhlIHZhbHVlIG9mIHplcm8uIFNlZSBtYWluIHRleHQgZm9yIGRlc2NyaXB0aW9uIG9mIHNlY3RvciBjb2RlcyB1c2VkLiB8QHRpZXJuZXkyMDExICAgfA0KDQojIENvbnRyb2wgVmFyaWFibGVzDQoNCnwgIFZhcmlhYmxlIGluIERhdGFzZXQgCSAgICB8IERlc2NyaXB0aW9ufCAgU291cmNlICAJICAgIHwNCnwtLS0JICAgICAgICAgICAgICAgICAgICAgIHw6LS0tLS0tLS0tLS0tLS0tfC0tLQkgICAgICAgICAgfA0KfCBgbm9uc3RhdGVgICAgICAgICAgICAgfCBEdW1teSB2YXJpYWJsZTsgMSA9IFByZXNlbmNlIG9mIG5vbnN0YXRlIGNvbmZsaWN0IGluIGNvdW50cnkteWVhciwgMCA9IG5vIG5vbnN0YXRlIGNvbmZsaWN0IHwgQHN1bmRiZXJnMjAxMiAgIHwNCnwgYGNvbmZfaW50ZW5zYCAgICAgICAgICAgIHwgRHVtbXkgdmFyaWFibGU7ICAxID0gQ29uZmxpY3QgcHJpb3IgdG8gcGVhY2UgcGVyaW9kIGhhZCBtb3JlIHRoYW4gMTAwMCBCYXR0bGUtcmVsYXRlZCBEZWF0aHMsIDAgPSBMZXNzIHRoYW4gMTAwMCBCUkRzIHwgQHRoZW1uZXIyMDEyIHwNCnwgYGxuX2dkcF9wY2AsIGBsb2coR0RQX3Blcl9jYXBpdGEpYCAgfCBOdW1lcmljOyBOYXR1cmFsIGxvZyBvZiBHcm9zcyBEb21lc3RpYyBQcm9kdWN0IChHRFApIHBlciBjYXBpdGEgKFdESSB2YXJpYWJsZSBuYW1lOiBgTlkuR0RQLk1LVFAuQ0RgKSB8IEB3b3JsZGJhbmsyMDE1YSB8DQp8IGBsbl9wb3AsIGxvZyhwb3B1bGF0aW9uKWAgICAgfCBOdW1lcmljOyBOYXR1cmFsIGxvZyBvZiBwb3B1bGF0aW9uIHNpemUgKFdESSB2YXJpYWJsZSBuYW1lOiAgYFNQLlBPUC5UT1RMYCkgfCBAd29ybGRiYW5rMjAxNSB8DQp8IGBXQm5hdHJlc2AgICAgfCBOdW1lcmljOyBOYXR1cmFsIFJlc291cmNlIFJlbnRzIGluICUgb2YgR0RQIChXREkgdmFyaWFibGUgbmFtZTogIGBOWS5HRFAuVE9UTC5SVC5aU2ApIHwgQHdvcmxkYmFuazIwMTViIHwNCg0KDQoNCg0KIyBNZWNoYW5pc21zDQoNCiMjIEVsZWN0aW9ucw0KfCAgVmFyaWFibGUgaW4gRGF0YXNldCAJICAgIHwgRGVzY3JpcHRpb258ICBTb3VyY2UgIAkgICAgfA0KfC0tLQkgICAgICAgICAgICAgICAgICAgICAgfDotLS0tLS0tLS0tLS0tLS18LS0tCSAgICAgICAgICB8DQp8IGBuZWxkYTU3YCAgICAgICAgICAgIHwgRHVtbXk7IE5FTERBNTcgIldhcyBhaWQgKHRocmVhdGVuZWQgdG8gYmUpIGN1dC1vZmYgYmVmb3JlIG9yIGFmdGVyIHRoZSBlbGVjdGlvbnM/IiAoMSA9IHllcywgMCA9IG5vKSB8IEBoeWRlMjAxMiAgIHwNCnwgYG5lbGRhNDVgICAgICAgICAgICAgfCBEdW1teTsgTkVMREE0NSAiV2VyZSBpbnRlcm5hdGlvbmFsIG1vbml0b3JzIHByZXNlbnQ/IiAoMSA9IHllcywgMCA9IG5vKSB8IEBoeWRlMjAxMiAgIHwNCg0KDQojIyBSdWxlIG9mIExhdw0KfCAgVmFyaWFibGUgaW4gRGF0YXNldCAJICAgIHwgRGVzY3JpcHRpb258ICBTb3VyY2UgIAkgICAgfA0KfC0tLQkgICAgICAgICAgICAgICAgICAgICAgfDotLS0tLS0tLS0tLS0tLS18LS0tCSAgICAgICAgICB8DQp8IGB2Mmp1cmVmb3JtX3QyYCAgICAgICAgICAgIHwgTnVtZXJpYzsgVi1EZW0gbWVhc3VyZSBvZiByZWZvcm0gb2YgdGhlIGp1ZGljaWFyeSBhdCAkdF8yJCB8IEBjb3BwZWRnZTIwMTUgICB8DQp8IGB2Mmp1YWNjbnRfdDJgICAgICAgICAgICAgfCBOdW1lcmljOyBWLURlbSBtZWFzdXJlIG9mIGFjY291bnRhYmlsaXR5IG9mIHRoZSBqdWRpY2lhcnkgYXQgJHRfMiQgfCBAY29wcGVkZ2UyMDE1ICAgfA0KfCBgdjJqdXB1cmdlX3QyYCAgICAgICAgICAgIHwgTnVtZXJpYzsgVi1EZW0gbWVhc3VyZSBvZiBwdXJnZXMgb2YgdGhlIGp1ZGljaWFyeSBhdCAkdF8yJCB8IEBjb3BwZWRnZTIwMTUgICB8DQp8IGB2Mmp1cGFja190MmAgICAgICAgICAgICB8IE51bWVyaWM7IFYtRGVtIG1lYXN1cmUgb2YgY291cnQgcGFja2luZyBhdCAkdF8yJCB8IEBjb3BwZWRnZTIwMTUgICB8DQoNCg0KIyBSb2J1c3RuZXNzIENoZWNrcw0KDQp8ICBWYXJpYWJsZSBpbiBEYXRhc2V0IAkgICAgfCBEZXNjcmlwdGlvbnwgIFNvdXJjZSAgCSAgICB8DQp8LS0tCSAgICAgICAgICAgICAgICAgICAgICB8Oi0tLS0tLS0tLS0tLS0tLXwtLS0JICAgICAgICAgIHwNCnwgYEV0aG5pY2AgICAgICAgICAgICB8IE51bWVyaWM7IEV0aG5pYyBGcmFjdGlvbmFsaXphdGlvbiBJbmRleDsgaGlnaGVyIHZhbHVlcyBpbmRpY2F0ZSBoaWdoZXIgZnJhY3Rpb25hbGl6YXRpb24gfCBAYWxlc2luYTIwMDMgICB8DQp8IGBEU19vcmRpbmFsYCAgICAgICAgICAgIHwgT3JkaW5hbDsgVU4gUEtPOyAxIHRvIDQgd2l0aCAxIGxlYXN0IHJvYnVzdCBtYW5kYXRlIGFuZCA0IG1vc3Qgcm9idXN0IG1hbmRhdGUgKHNlZSB0ZXh0IGZvciBjb2RpbmcgZGV0YWlscykgfCBAZG95bGUyMDA2LCBAaGVncmUyMDExICB8DQp8IGBMSklfcmVnaW9uYWxfbWVhbmAgICAgIHwgTnVtZXJpYzsgcmVnaW9uYWwgbWVhbiBvZiBMSkkgc2NvcmVzIChzZWUgYWJvdmUpIHdpdGggaW4gMTQgV29ybGQgQmFuayByZWdpb25zIHwgQGxpbnplcjIwMTUgIHwNCnwgYGNvbW1vbmxhd2AgICAgIHwgRHVtbXk7IEluZGljYXRlcyB3aGV0aGVyIGNvdW50cnkgY29tbW9uIGxhdyBsZWdhbCBzeXN0ZW0gKDEgPSB5ZXMsIDAgPSBubykgfCBAbWVsdG9uMjAxNCAgfA0KfCBgZHVyYXRpb25fY29uc3RpdHV0aW9uYCAgICAgfCBOdW1lcmljOyBOdW1iZXIgb2YgeWVhcnMgY3VycmVudCBjb25zdGl0dXRpb24gaGFzIGJlZW4gaW4gcG93ZXIgfCBAbWVsdG9uMjAxNCAgfA0KfCBgcGVyc2FnZ255MmAgICAgIHwgTnVtZXJpYzsgIiB0b3RhbCBudW1iZXIgb2YgY2hhbmdlcyBvZiB0aGUgY2hpZWYgZXhlY3V0aXZlIGR1cmluZyB0aGUgcmVnaW1lIHNwZWxsIGRpdmlkZWQgYnkgdGhlIHllYXJzIG9mIHJlZ2ltZSBzcGVsbCBkdXJhdGlvbiIgaGlnaGVyIHZhbHVlcyA9IGxvd2VyIHRlbmRlbmN5IG9mIHBlcnNvbmFsaXN0IHJ1bGUgfCBAd2FobWFuMjAxMyAgfA0KDQoNCg0KDQoNCiMgUmVmZXJlbmNlcw0K